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Abstract—Wireless sensor networks are often deployed
for tracking moving objects. Many tracking algorithms have
been proposed with two general assumptions: the pre-
set fingerprints(prior landmark or context information) and
an interference-free environment. These algorithms, how-
ever, cannot be used for on-demand deployment where
finger-prints are unavailable and would perform poorly in
interference-rich environments. In this paper, we present
a fingerprint-free localizing and tracking algorithm, called
Enhanced Field Division (EFD). The EFD algorithm is used
to dynamically divide the field into areas with unique
signatures and tracks the target, without any finger-prints. We
also implemented a proof-of-concept localization platform
to demonstrate the tracking accuracy and the algorithm
performance in practical, interference rich environment.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have been widely
used in military and civilian application for object track-
ing. [1] However, because of their cost and accuracy
limitations, existing localization and tracking methods
can hardly meet the performance requirements in large
scale deployment [2].

In general, WSN-based localization mechanisms fall
into two categories: range-free [3], [4] and range-
based [5]. While the range-based methods require ex-
pensive hardware, precise model for Received Signal
Strength (RSS) and dedicated analysis for noise [6], the
range-free methods, demand for less range information,
are more suitable for large-scale sensor network systems.
The range-free strategy has been studied in many algo-
rithms, such as Regulated Signature Distance(RSD) [7],
Bubble Trace [8], EZ [9] and Unsupervised Indoor Lo-
calization(UnLoc) [10]. To skip the prerequisite of inten-
sive prior study of the field by creating landmarks or
fingerprints [10] for localization, we start our design by
optimizing an influential factor — the deployment of the
anchors.

In this paper, we first study the optimal deployment
of the anchors and provide a new strategy for tracking,
namely Enhanced Field Division (EFD), based on field
signatures and dynamic divisions. Firstly, EFD ignores
the actual value of the RSS and focuses on the high-
low relationship between RSSs from each anchor, which
is less affected by the RF fading than that with definite
RSS value. Secondly, taking advantage of field division
with optimal anchor placements, we avoid the issues
of intensive fingerprint sampling. Thirdly, we present a

novel tracking strategy, grid tracking, to further reduce
tracking errors. With our aggressive dynamic localization
strategy (defined and discussed in Section V-D) after
matching the signature, the accuracy of localization can
be enhanced efficiently. Finally, we build a localiza-
tion system platform using off-the-shelf commercialized
products.

The rest of the paper is organized as follows: Sec-
tion II briefly describes the related works, and Section X
concludes the paper; section III briefly describes the theo-
retic basis of the EFD; section IV lists the main challenges
in existing location tracking methods; section V details
the solutions and the system design; section VI analyzes
the lesson learned; section VII evaluates the design with
extensive simulations and make several comparisons
with typical location tracking algorithm; section VIII
introduces our test-bed system; section IX presents the
experiments to demonstrate the effectiveness of the EFD.

II. Reratep Work

Localization in sensor networks has been a heating
research topic recently [4], [5], [11]. Admittedly, this is
not the first paper to use relative sequence instead of ab-
solute values as an indication for localization. Sequence-
based localization technique has been mathematically
analyzed in [12]. Even in the ideal situation where an-
chors own the same peak RSS, the practical scenario will
never reach the maximum number of subareas as their
equations demonstrated, for they ignore the limitation
between the boundaries and anchors, which is revealed
by our work. Furthermore, the asymmetry of the RSS
from different anchors caused the test-bed situation to
be more complicated; our work deal with this problem
effectively by using weighted sequence.

As for the measurement method, a continuum of al-
gorithms exist across a variety of range-based and range-
free configurations. Range-based algorithms use physical
sensors or signal-strength mechanisms to detect motions.
Most works [5], [11] use sensors and beacons to detect
the movements for localization. Localization with signal-
strength mechanisms such as Wi-Fi and GSM have been
studied in the literature as well [13]. Later, grid-based
methods were developed successfully and most of them
rely on landmarks in school and office environments [10].
These methods determine the best landmarks for reliable
localization. Recently, range-free localization [3], [4] were



developed, replacing landmarks with raw measurements
and the histogram posterior with particles. In a hybrid
of ideas between signal-strength mechanisms and grid-
based methods, RSD [7] and RND [14] introduce novel
range-free algorithms based on a relative distance us-
ing trilateration. Although the trilateration is indeed a
remarkable universal method in tracking, the different
models based on the trilateration result in different mod-
ifying factors.

This paper, thus, focuses on addressing the interfer-
ence in common environments by replacing the trilatera-
tion with a map division and employing a close tracking
technique for getting higher accuracy of localization,
mainly making those contributions:

1) It is the first work trying to both optimize the
anchor deployment for localization and consider
the different peak signal value of anchors.

2) It breaks the traditional thinking of subareas in
map segmentation by indicating the difference
between subarea and sub-region.

3) It designs a C/S system to verify the algorithm
in both friendly and unfriendly environments.

4) It proposes a dynamic dividing method to re-
duce estimated position bias in a static map.

III. Tueoretic Basis or EFD

This section briefly describes two basic ideas, field
signatures and division, in the EFD. Similar to the re-
search in [7], we find that the relative RSS rather than the
absolute one can be employed to mark different unique
regions. We then introduce the concept of field division
with which divided subarea owning a unique signa-
ture. Our discussion starts within a two-dimensional
paradigm although the algorithm applies to a three-
dimensional paradigm as well. [15] In this region, three
heterogeneous wireless base stations (anchors), A, B and
C are set in Fig. 1. Ignoring the environmental noise,
RSS demonstrates a monotonic effect on the geographic
distance [16]. Though using the relative value, we can
support and improve with a well studied RSS distribu-
tion models in dbm (decibels above one milliwatt) as in
Equation 1 [17] meets the purpose.

RSS = py + 10n log(r70) Q)

in which, n, ry and py are the constants parameters, and
r is the distance between the target and anchor. If r=r,
RSS=py, letting k be the number of anchor nodes in a

Anchor: Signature
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Fig. 1. An Example With Three Anchors

map, we define a high-dimensional location signature
function ¥ as follows:

s = F(rssy1,1553), ..., ¥SSN)) (2)

where s is signature of the target location, and rss;,
1 < i < N, is the target’s RSS from the anchor node
i. The function ¥ is modeled by a descending sorting
function. Therefore, we have rss; > rss; for all i < j for
every signature s. Given the RSS transmission model,
we denote the subarea in Definition 1 for field division
and define the boundary as a curve that separating two
adjacent subare as.

Definition 1 (Subarea). A subarea is the point set whose
members own the same signature in the field segmentation.

Taking a region with two anchors, A and B, as an ex-
ample, point set belonging to the boundary (RSS4=RSS53)
is derived as

pao +10n1log 2% = pgo + 101 log 22 3)
ra e

where r4 and rp represent the relative distance to anchor
A and B. pao, pro is the reference RSS value at the distance
of 74, po. Solving this equation, we can get a relationship
of r4 and rp as

e PBO—PAQ
— =k, where k=21« ; 4)
TA

The point set, defined in Equation 4 (equal RSS from
A and B), defines the Apollonius circle [18]. The circular
arc (boundary) divides the area into two sub-regions so
that every point on one side of the arc will see its RSS
from anchor A to be stronger than that from B, and vice
versa. Then a signature, s, for any given point can be
decided immediately by its relative location toward the
arc. For example, as shown in Fig. 1, the signature at
position x, y and z will be s, = (C,B,A), s, = (B,A,C)
and s, = (A, C, B) respectively. The signatures at anchors
can be decided for consistency. At anchor point A, sy =
(A, C, B). At anchor B, the sz = (B, A, C). Then the region
is segmented into many subareas by signatures in Fig. 1.

Theorem 1. In general, once the subareas are set, the signa-
tures will be set and unique in each subarea.

Proof of Theorem 1: 1f the signature of one subarea is
not unique, there are two possible situations: Ether this
signature will be found in at least one another subarea,
or this subarea will own at least one other different
signature. Then an apagogical method — we assume at
least one possible situation will occur — can be used to
illustrate our theorem. [7] [ |

EFD wants to choose the placement of anchors to op-
timize the subarea generation. With this, we can estimate
a target’s location by judging the subarea in which the
target lies by matching the signature created by the target
to a pre-generated signature set S. As such, a new form
of localization via subarea signature through optimal
anchor deployment is created.

Then, the localization accuracy depends on the num-
ber of anchors N, the total number of signature subareas



and the anchor deployment. By using relative signal
strength and thus unique signatures, we can alleviate the
environmental interference suffered by traditional range-
based techniques. Compared to a fingerprinting-based
approach, which is time-consuming and vulnerable to
infrastructure change, the EFD is cost-efficient and highly
effective.

IV. DgsioN CHALLENGES

Though avoiding most of the intrinsic heavy burden
or high infrastructure cost problems that happens in
range-free methods, most range-based designs are faced
with some challenges which will be solved in the EFD,
such as calibrating the location system for different in-
door surroundings or for real-time tracking, and posi-
tioning the wireless anchors to efficiently use signatures.
Three main challenges for the proposed scheme are 1)
vicious field divisions, 2) illegal signatures, and 3) status
quo in tracking.

A. A Vicious Field Division

ub-
gion

A B

PS: Anchor A, B and C are
exactly the same

\ i Existent :Non-Existent
A I' Signatures: :Signatures:
. 7 ABC; /A C B;
sub-region; U \ BAC; :C A B;
A\, BC A; |
one subarea CBA; |

Fig. 2.
Sub-regions and Signatures

Relationship between Fig. 3. The Example of Illegal
Signatures in Linear Topology

Although the field division is lower-overhead and
relatively accurate, some unexpected and vicious scenar-
ios, which break the independence of the sub-regions,
still remain. In practice, subarea and sub-region (defined
in Definition 2) are similiar but not the same concepts
in some scenarios that we will discuss in the following
section.

Definition 2 (Sub-region). A sub-region is an area which is
segmented by boundaries.

As demonstrated previously, the ideal boundaries are
arcs that define a continuous sub-region. However, a dis-
tracting scenario in which isolated sub-areas as one sub-
area (shown in Fig. 2) can be created due to unplanned
anchor deployment. This issue forms our motivation to
search for the optimal anchor deployments.

B. lllegal Signature

In order to intuitively understand the impact from
RF fading and interference, we conducted a number
of real-environmental measurements. What disturbed us
most was that illegal signatures are derived from our
signature function # based on the real-time sensing
{rss(mj)li =1,2,...,N}.

Definition 3 (Illegal Signature). An illegal signature is a
signature that can not be mapped to any legitimate subarea
based on the EFD’s field division algorithm as we discussed
previously.

For example, as shown in Fig. 3, anchors A, B and
C, the same in specification, are deployed in a linear
topology; its legitimate signature set S includes only
four signatures, S = {(A4, B,C),(B,A,C),(B,C,A),(C, B, A)}.
However, during real-environmental experiments, the
signature function ¥ reports s = (A, C, B) or s = (C, A, B).
This happens when the RF fading and other environ-
mental interference invalidate some segmentation based
upon an ideal model defined in Equation 1. Hence, a
need for a calibration design of the ideal RSS model for
environment interference arises. We solve this challenge
by combining the limited prior information and current
sensing data to provide balanced field segmentation.

C. Status Quo Effects

:Actual path
:Estimated path

Fig. 4. Tracing without anchor deployment optimization

To increase the tracking accuracy, a certain amount
of anchor coverage is preferred to provide larger field
division. The effects of field heterogeneity resulting from
random anchor deployment and insufficient anchor cov-
erage can lead to the status quo problem, in which the
system fails to track ground truth motions of the target,
severely degrading measurement accuracy. As shown
in Fig. 4, the target actually moves 26 steps, but basic
signature presents only 14 positions. What’s worse, when
the target is leaping off the boundary—for example, the
trail from point A to point B-the status quo situation will
render a discontinuous tracking estimation. Obviously,
the status quo problem embedded in a range-free based
approach requires the tracking system to explore the
motion information for improving tracking accuracy.

V. Basic System DEsiGN

In this section, specific solutions for the tasks men-
tioned in Section IV will be discussed, divided in five
parts: field division, model adjustment, optimal anchor
deployment, grid tracking strategy and correction when
crossing the boundary.

A. Field Division

With the fundamental theory of the EFD, the physical
information can be abstracted to the RSS signature for a
region of interest once the anchors have been deployed.
It should be emphasized that our design by nature does
not rely on the accuracy of RSSs. The well-defined model
presented as Equation 1 will suffice in our discussion.



More important to the EFD system is the accuracy and
efficiency of signatures.

In a scenario with n anchors, the maximum number
of signatures M(n) could be calculated by Equation5 [7],
where () represents the number of circles

2
wol o

However, this equation still outnumbers the practical
boundaries. Taking a group of three anchors «, §, ¥ as
an example, By is the boundary of @ and g, B, is the
boundary of @ and y, B; is the boundary of § and y. v&
represent the distance of point v to point a, so are vf,

Y.
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In this way, Bi, By, B3 owns only two points of
intersection which is 4 less than that of three unlimited
circles. So, the possible maximum partition is

n\" (n ()*4 (n 2 n
o) )27 Bl )22 o
Increased number of anchors 7 leads to the growth of
legitimate signatures or divisions, thus rendering higher
localization resolutions. However, the challenge that the
EFD addresses is to enhance localization accuracy under
poor anchor coverage. Through the analysis above, the
maximum number of legitimate signatures in a n-anchor

map is less than n!, the total number of possible signature
permutation.

Lemma 1. n! > M(n), when n >=5;

Given Lemma 1, we will encounter the illegal signa-
ture issue which will be addressed in Section IV-B.

B. Model Adjustment

Note that not the absolute value but rather the relative
strength of RSS is relied in the EFD algorithm. Based
on our measurements, we discovered the RSS degrada-
tion due to the impact of interference toward different
anchors to be highly correlated. To accommodate RF
fading and the multipath effects in environments, we
can make an adjustment to the RSS model in Equation 1
for the sake of convenience. Therefore, we model the
effects by a factor A to py so that Ajpy absorbs the
environmental interference pattern. The ideal RSS model
shall be adjusted as:

RSS(i) = Aipo + 1Onlog(:—0) +e )

1
, where A; is the interference factor of anchors and e
is the adjustment error. Because factors A;,i = 1,2,...N,
are highly correlated, the huge interference doesn’t make
much difference in the division signatures after adjusting

the model. As a result, the problem turns into estimating
Ai to minimize the estimation o(€). If we denote p- = A;po,
and assume the p’ follows a normal distribution, p’ ~
N(uo, 0 ) and there are prior beliefs about the E(p) = Ko,
and (5(p ) = 60, o and o represent the best guess for p ,
and the uncertainty of the guess, which comes from prior
experiments or specification from service providers, we
can modify the inputs to Equation 9 based on the in-situ
estimation of ¢ and 6(p'). [19] A standard estimator of
expectations is the sample mean o(e)

1 1 o2
A= ~ L
= Z;XT NG, ) (10)

, Where | is the number of available sampling series.
However, the sample mean is an inefficient estimator
as the sampling estimation varies widely for different
sampling series [19]. One way to cope with this issue is
to use a more efficient balance estimator:

u® =1 -b)p +brd (11)

, where 7t is our best guess, ° ~ N(o, 0 05),and 0 <b <1
is the balance factor. The purpose is then to minimize
balance o, under any given u). Thus,

Minimize ob v'Vvb
Subject to E(uo) =b'U =[i

i=1

0 :

(12)

, where V is the covariance matrix between i and 7°,
and U is the vector [, f1].

The first solution to that formalization is
Vb=AU—b=AVU

Thus, the optimal balance factors given by the answer
are used to derive the u®), as the optimal representation
of Ajpp in Equation 9.

C. Anchor Deployment

Signatures provide useful location information for
practical tracking. The EFD algorithm also seeks to opti-
mize its usage by avoiding the vicious division resulting
from the complexity in signature mapping.

Theorem 2. One subarea always owns only one signature,
but one signature may owns more than one sub-region.
Proof for Theorem 2:

(1) A target crosses one circle boundary for ¢ times.
If t is an odd, which means that two movements—
leaving and entering that circle boundary-are paired, the
sequence will not change;

(2) If v}, v belong to the same subarea, v; must cross
each boundary ¢ times (t=0, 2, 4, ...) to reach v.

Thus, one subarea owns only one signature.

(3) With asymmetrical py and equal rp in Equation 9,
boundaries are circles. It is possible that sub-region SR;



: The Boundary by EFD
~ : The Moving Direction

: The Boundary by EFD
~ : The Moving Direction

(a) t = 0, moving in subarea

Fig. 5. The Process of Grid Tracking

(b) t = 1, moving in subarea

and SR; are located respectively at two sides of a circle
as it is shown in Fig. 2;

(4) Given this circle is the boundary of Anchor A and
Anchor B, the sequence AB(BA) will become BA(AB)
when entering(leaving). Thus, the sequence of A and
B is still after crossing the circle(including entering and
leaving) as it is shown in Fig. 2.

So it is possible that one signature owns more than
one sub-region. |

To eliminate the error rate and improve the accuracy,
minimizing the vicious division is a considerable step
in EFD’s anchors placement scheme. N, denotes the
number of vicious division, and N; is the total number
of subareas, S = {51, Sy, ...Sx,}. The optimal anchor place-
ment scheme in EFD will satisfy: Maximize N,, Subject
to Ns > 1, and Minimize N,. Note that, in practice, this
problem can be solved by a bootstrapping technique [20].

D. Grid Tracking Strategy

As mentioned previously, one of challenges that the
EFD system faces is the status quo issue. In this section,
we will discuss another key technique in EFD, the grid
tracking strategy [21], [22]. Denote V; as the estimated
velocity of the target at time t and D; as the moving di-
rection of the target. These two properties, describing the
motion, can be estimated precisely by approaches such
as the geomagnetic field analysis in the EFD location
platform.

While the target is moving, fictitious edges for four
two-dimensional directions, S, N, W, and E, are dynam-
ically created to gauge the motion range of a target at
each cycle t. By default, the edges matrix L are set to the
boundary (IB,) of the Subarea A, in Equation 13

min(x) max(x)

LO=Ba=( miny) maxty) ) @GN €A 09

(x,y) is the coordinates of the subarea A; that the target
enters initially. Then, the L at time ¢ is updated by
Equation 14,

L =L(t-1)+V-D (14)

If the edge L exceeds the boundary of subarea A;,
this L will be replaced with the boundary. The reciprocal
process is demonstrated in Fig. 5. Note that the process
continues until a detection of a signature change, which
indicates that the target is crossing the boundary of the

——— : The Boundary by EFD
~ : The Moving Direction

: The Boundary by EFD
~ : The Moving Direction

(c) t = 2, moving in subarea (d) t = 3, crossing the boundary

subarea. To move the L, we define a velocity matrix Lv
as in Equation 15

V-cosO® V.cosO

Lo=1y . sine v-sino !

(15)
If a target moves within one subarea, L(t) = L(t — 1) + Lv.
However, once it crosses the boundary, the limit L will
make a specific change.

E. Correction with Boundary Passing

When a target crosses a boundary separating two sub-
areas S; and S;, based on theorem 1, the corresponding
signature from EFD’s mobile localization platform will
change. This change actually offers a chance for EFD
to calibrate the location estimation. Denote D, as the
direction indicator in Equation 16:

D,=( we sn) (16)

in which, we=(37 < 0 < 3m)?1:2, sn=(n < 0 < 2m)?1:2,
and 6 = /D. Once the signature changes, the correction
algorithm will be carried out immediately as described
in Algorithm 1.

Algorithm 1: Correction at Boundary Crossing

Output: L —the limit for estimated position

1 Input area sequence number n

2 Get By, as defined in Equation 13

3 Get the estimated angle for current moving (9) to
calculate the Dir and Lv

4 temp =L+ Lo

s fori=1;i <2 do

6 if temp; j, j = 3 — Diry,; inside subarea then
7 ‘ Li]:tempi,j

8 else

9 UsedBorder « By, (i,3 — Diry ;)

10 L; j= UsedBorder

1 Lipir,;=Li3-Dir,;+2L0; Dir, ;5

12 estPos « —=5) __ (uhare

numbero f (xy, k)

(X, Y) € subarea(n)&&(xy, yx) € Limit(t)

VI. Lessons LEARNED

As discussed in Sections III, IV-B, V and, the EFD
faces a practical problem-illegal signature. In our ini-
tial experiments, it is discovered that such an impasse
scenario can destroy the robustness of EFD system. For
example, in a practical scenario, we may receive a signa-
ture s, = (3,4,1,2), but s, ¢ {s|s = F (rss(i)),i = 1,2, ..., N}.
In an effort to ensure efficient use of the signature set S
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Fig. 6. The path and error distance when speed is four

by minimizing the impasse scenario, a utility function is
introduced in Equation 17,

Ui, 3) = pi - yoy, (17)
where p is defined as the average of RSS from anchor
i o; is the standard deviation of p, and y defines a
relative interference coefficient that describes the loss in
signal strength due to environmental interference. The
y is higher in a signal unfriendly environment such
as a concrete building than it will be in an outdoor
environment with less interface. Therefore, to resolve
impasse condition, signatures must be selected. Let’s
define the weight assigned to different anchors as W =
{w1, wo, ..., w,} (w; is the weight for anchor;). As such, the
optimization problem is to determine W so that the total
utility is maximized, that is:

mvex Z w;U(p;, 053)
i (18)
s.t. Z w; = 1(denotes as W’'=1) and w; > 0

Under our definition, the total utility is written as:

uW') = Y wl(py,0?)
i=1

n n L
Y-y +2 ) 3w ot )
i=1 i=1

i=1 j#i
=Wp—-yWQW
(19)
in which s
Gp”l 061,06, 061,06,
2
(j' ~ ~ (j' N DI O‘ Py ~
02,01 02 P1,Pn
Q = Covlog, o) = A e
2
Opupi  Opupy " Op,

04,0, 1 the degradation correlation between anchors
i and j, and 7 is the number of anchors. The numerical
solution of W can be solved by Lagrangian derivation.
Let’s form Lagrangian function

L=Wp-yWQW - A (W —1) (21)

where A; is a Lagrange multiplier. Then, taking deriva-
tives of the Lagrangian with respect to vector W':

JL
=— :1p—-yQW-1,=0

S (22)
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As a result, this proves Equation (23). The optimal
W = {wy, ws...,w,} can then be applied to RSS to derive
the optimal field signature.

Lemma 2. The optimal solution of W will be:

W= %Q‘l(p ~ 1) 3)

VII. SystEM EvaruarioN BY COMPARISONS

To illustrate the performance of the EFD system,
we executed extensive computer simulations and con-
ducted field tests based on our software-hardware EFD
system platform. In this section, the simulation results
are demonstrated, by comparing EFD with RSD and
adjusting the estimated speed.

A. Evaluation Criterion

Before the simulation, we summarize the evaluation
criterion for tracking. One is real-time error of localiza-
tion, Err(t) shown in Equation 24; another one is Accu-
mulated Error, aErr(t), which is defined in Equation 25.

Err(t) = (& = X2+ (7 -y

(24)

aErr(t) = aErr(t — 1) + Err(t) = ft Err(t); (25)
0

in which £, § are the estimated position coordinates and
Xg, Y, are the ground-truth position coordinates respec-
tively; t > 0, and aErr(0) = Err(0).

B. EFD VS. RSD with Multiple Anchors

In the first category of simulation, the velocity v is
under controlled and the number of anchors N varies. As
shown in Fig. 6, the green line represents the actual path
of the target, the yellow line represents the calculated
path by the EFD, and the pink line is the result from
the RSD only. To get a numerical comparison between
the RSD and the EFD, the error distance Err and the
accumulative error distance aErr are compared. Fig. 6
shows the performance metrics with N = 4. From the
analysis of these figures, we can see clearly that the
EFD outperforms the RSD in all scenarios. What’s more,
under poor anchors coverage, such as four anchors,
the EFD can improve the accuracy of the system more
dramatically. It is not surprised that when there are few
anchors deployed, the subareas are larger on average,
so the EFD, powered by grid tracking algorithm, can
achieve higher localization resolution in almost every
subarea.
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C. Effects of Target Velocity

Considering that the estimated speed plays an impor-
tant role in grid tracking, speed variation v ~ N(uy, 02)
is another major factor that will affect the accuracy of
the system. So we also show the results under differ-
ent standard deviations(o,).(To eliminate the effect of
estimated direction, our simulation set the real moving
direction as the estimated one) Higher o, implies higher
lability of the estimated volatility and hence can be used
to evaluate real-time tracking system’s performance. In
this comparison, the o, varies from 0 to 4 speeding
units, we then compare the results among the EFD,
RSD and RSSI approaches and adjust the average speed
and number of anchors. As shown in Fig. 7, the error
distances caused by volatility, increase as o, increases.
However, such error increase is alleviated if N increases
and v decreases. In conclusion, the proposed EFD system
still outperforms the RSD and RSSI in all of the speeding
scenarios, rendering much lower localization errors than
with other approaches.

VIIL
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Fig. 8. The Relationship Between each Part of the experiment

In this section, we explain how modules in the EFD
system work together. To cooperate with each of the
other parts efficiently, there are three types of roles:

1)  Administrator. It trains initial parameters of an-
chors and collecting in-situ information of sce-
narios.

2)  Client (Receiver). It refers to the smart-phone re-
ceiving RSSs from anchors and collects magnetic
information from sensors.

3) Anchor (Sender). It refers to s a low-cost signal
emitter, like a wireless routers or a beacon.
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The relationship between each part is shown in Fig. 8
(mainly for the measuring section) and the descriptions
for messages are concluded in TABLE I. There are six

TABLE L THE MEANING OF MESSAGE
R M C | RSS and Mac address from Anchors
with the ID of Client
CR_M C | Adjusted RSS and Mac data using
Weighted Map with the Client’s ID
Clocation | Computed position of the Client
location | groud-truth position of the Client, an
input from Client in training mode
para Parameters of Anchors and scenario,
an input from Admin
history | history of R M_C and Clocation

parts in the system, including two foregrounds in An-
droid and PC and four kernel parts in Background
Server.

1) Android-based smartphone:

e receive data from each anchor
e code the received data

e send the formatted R M _C to the server

2) database(mysql): This part is used to store the data.
During the localization period, it stores the Clocation
and R M C(CR_M Q). During the training period, an
additional value, the real position, denoted as location, is
collected in this part. The location is an input from the
Client (Trainer).

TABLE II. DataBask DEsiGN
target x computed position of the target x
anchor tb | information of the anchor: mac and
coordinate
site_para scenario: length and width
log target x | log and data for target x

3) foreground display: Foreground display is a user-
friendly part to display the tracking and help non-
professional users.

4) The controller: this part is the kernel of the system,
controlling the main flows and handling them in the
Algorithm 2.



Algorithm 2: Controller works in measuring mode

Output: Clocation,history

Input: R_M_C,para

if log time==0 then

2 read para from Tables anchor tb and site para
| in Database;

3 while Receive R_M _C from Client do

4 if log time%LOG NUM==0 and log time!=0
then

[y

5 read history from Database;

6 CR_M _C= History Checker(history);

7 Clocation=Localize(CR _M _C,para);

8 clear log target C;

9 if isValide(Clocation) then

10 | write Clocation to Table target C;

11 else

12 Clocation=Localize(R _M _C,para); write the
| R_M_C, Clocation to Table log_target C;

13| log time++;

5) localizer: It is used to compute sequence and initial-
ize the segmentation map after entering the para from the
Administrator, it then gets the subarea of the Client using
the RSS from Anchors, computes the estimated direction
from magnetic data from Client’s sensor. Finally it returns
the estimated coordinate of Client as Algorithm 1 shows.

6) history checker: It is used to checkout and fit the
more appropriate RSS of anchors according to the pre-
vious records, and return the Checked RSSI. This is the
implementation of optimal RSS utility.

IX. LocavrizarioN SysteM PrLatrorMm EvaLuaTioNn

To quantify the performance of the proposed EFD al-
gorithm, we carried out extensive field tests by using our
EFD localization system as shown in Fig. 8. An android-
based Samsung 19500 smart-phone, is used as a mobile
platform. Tenda w3200 Wi-Fi routers and self-designed
wireless hotspots are used as the wireless anchors in
following experiments. Our experiments are categorized
into three sets in different environments with increasing
complexity.

A. Planted in wide open area

In the first set, anchors were deployed in a wide open
area, measuring 30 meters in length and 40 meters in
width, as shown in Fig. 10. Target client moved randomly
at a normal velocity of a pedestrian, and measured
the localization errors at different spots. Under such
specification, accumulated error distances of the RSD and
the EFD are shown in Fig. 9(a). The results show that the
EFD outperforms the RSD with almost 50 percent higher
localization accuracy.

B. Experiments in a building

Secondly, we conducted an experiment in a complex
environment, that included trees, stairs, pillars, and an
aisle. Anchors were placed in the hallway of the parter-
res, as shown in Fig. 11. Tracking results are depicted
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in Fig. 9(b), which indicates that the EFD achieved an
average error 33.3 percent less than the RSD.

C. Experiments in a classroom

- @(3,9.9)
-1t 7 |
|

|
|
@(3,5.4)
|
Con‘Lidor ‘

Clasd‘room
|

Fig. 12. Experiment in a Rather Complex Area

Third, we carried out experiments in classrooms
where RF signals shading can be serious, because of the
walls and numerous desks and chairs, as seen in Fig. 12.
The tracking result, as shown in Fig. 9(c), also illustrates
that the EFD outperforms the RSD with 15 percent lower
error.

Thus, these experiments in Sections IX-A, IX-B, IX-C
demonstrate EFD’s relatively high interference-free ca-

pacity.

D. Comparison Evaluation

TABLE III. COMPARISON AMONG FOUR ALGORITHMS
Name Accuracy| Weakness
EZ 2-7m GPS Lock
Unloc 4-10m intensive prior study
DV-hop | 5-10m considerable error distance
EFD 1-4m low with large scale of anchors

Based on the overall results, we quantitatively com-
pare the EFD with other algorithms, such as EZ [9],
Unloc [10] and DV-hop [23]. Average error results are
shown in TABLE III. Limited in equipment, We use only
802.11 whose stability is not high enough compared with
GSM [24] in our experiments. As such, it is concluded
that the EFD can achieve a better performance with
less complexity and higher robustness for on-demand
deployment, if using GSM.
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X. CoNcLUSION

This paper introduces a new mechanism of local-
ization called Enhanced Field Division (EFD), which
increases the accuracy and stability of the system within
terrains with high interference. Based on the division
signatures, which can track the target’s position within
the possible subarea using estimated direction and walk-
ing speed, is proposed as a complement for signature-
only EFD. This is an important attempt in which both
sender and receiver play roles in localization. In addition,
three strategies are also introduced to minimize illegal
signatures, vicious field division and Status Quo Effects.

To verify the EFD, we conduct a series of simulations,
and build a real-environmental localization system. The
results prove that the EFD is more accurate and reliable
than other approaches, like the RSD, DV-Hop and un-
Loc. Besides, there is great potential to spread the EFD
algorithm using popular transmitters like iBeacons.
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